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1 More Hilbert Space Review

1.1 Linear functionals

Let H be a Hilbert space over F = R or C. We want to consider linear functionals
L : H → F.

Proposition 1.1. Let L : H → F be linear. The following are equivalent.

1. L is continuous.

2. L is continuous at 0.

3. L is continuous at one point.

4. L is bounded (∃c <∞ such that |L(h)| ≤ c‖h‖ for all h ∈ H).

Definition 1.1. For a bounded linear functional L its norm is

‖L‖ = inf{c > 0 : |L(h)| ≤ c‖h‖}

= sup

{
|L(h)|
‖h‖

: h ∈ H \ {0}
}

= sup{|L(h)| : ‖h‖ = 1}.

Theorem 1.1 (Riesz representation). If L : H → F is a bounded linear functional, then
there is a unique h0 ∈ H such that L(h) = 〈h, h0〉 for all h ∈ H. Moreover, ‖L‖ = ‖h0‖.

Corollary 1.1. If L : L2
R(µ)→ R is a bounded linear functional, then there exists a unique

h0 ∈ L2
R(µ) such that L(h) =

∫
hh0 dµ for all h ∈ L2

R(µ).
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1.2 Orthonormal sets and bases

Definition 1.2. A subset E ⊆ H is orthonormal if 〈e, e′〉 = δe,e′ for all e, e′ ∈ E . E is a
basis if it is maximal under inclusion.

Proposition 1.2. Any orthonormal set is contained in a basis.

The proof uses Zorn’s lemma.1

Example 1.1. In L2
C([0, 2π]), let en(t) = 1/

√
2π
e

int
. The set {en : n ∈ Z} is an orthonormal

set (it is actually a basis, too).

Example 1.2. In Fn, let ek be the vector with all 0s except a 1 in the k-th coordinate.
Then {e1, . . . , en} is an orthonormal basis.

Example 1.3. In `2 = {(xi)∞i=1 :
∑

i |xi|2 < ∞}, let en be the vector with all 0s except a
1 in the n-th coordinate. Then {en : n ∈ N+} is an orthonormal basis.

Theorem 1.2 (Gram-Schmidt procedure). If (hn)n≥1 is linearly independent, then there
is an orthonormal sequence (en)n≥1 such that for all N ∈ N, we have sspan{h1, . . . , hN} =
span{e1, . . . , eN}.

Proposition 1.3. Let {e1, . . . , en} be an orthonormal set in H, and let their span be
M = span{e1, . . . , en}. Then PMh =

∑n
i=1 〈h, ei〉 ei.

Proof. Recall that PMh is the unique vector in M such that h − PMh ⊥ M . Check this
property.

Theorem 1.3 (Bessel’s inequality). If (en)n≥1 is an orhonormal sequence in H and h ∈ H,
then

∑
i≥1 | 〈h, en〉 |2 ≤ ‖h‖2.

Proof. Fix n ∈ N. Then consider 〈h, e1〉 , · · · , 〈h, en〉 en, h−Pnh. The Pythagorean identity
gives

∑n
i=1 | 〈h, ei〉 |2 + ‖h − Pnh‖2 = ‖h‖2. Removing the term ‖h − Pnh‖2 gives the

inequality for n.

Corollary 1.2. If E is an orthonormal set in H and h ∈ H, then E0 = {e ∈ E : 〈h, e〉 6= 0}
is countable.

Proof. We have E0 =
⋃
n≥1 En, where En = {e ∈ E : | 〈h, e〉 | ≥ 1/n}. So Bessel’s inequality

implies |En| ≤ n2‖h‖2. In particular, each En is finite.

Corollary 1.3. If E is orthonormal in H and h ∈ H, then∑
e∈E
| 〈h, e〉 |2 ≤ ‖h‖2.

1You cannot do this without waving the magic set theory wand.
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Remark 1.1. By the sum over all e ∈ E , we mean that it is a countable sum, since all but
countably many terms in the sum are 0 for each h ∈ H.

What if we want to talk about uncountable sums in general?

Definition 1.3. Let (hi)i∈I be an indexed family in H. Then∑
i∈I

hi = k

means that for every ε > 0, there is a finite F ⊆ I such that whenever F ⊆ F ⊆ I and
|G| <∞, we have ‖k −

∑
i∈G hi‖ < ε.2

Lemma 1.1. If E is an orthonormal set in H, M = span E, and P = PM , then

Ph =
∑
e∈E
〈h, e〉 e.

Theorem 1.4. Let E be an orthonormal set in M . The following are equivalent:

1. E is a basis

2. If h ⊥ E, then h = 0.

3. span E = H

4. For all h ∈ H, h =
∑

e 〈h, e〉 e.

5. For all g, h ∈ H, 〈g, h〉 =
∑

e 〈g, e〉 〈e, h〉.

6. For all h ∈ H, ‖h‖2
∑

e | 〈h, e〉 |2.

Corollary 1.4. Any two bases of H have the same cardinality.

Definition 1.4. The dimension dimH is the cardinality of a basis of H.

Proposition 1.4. An infinite-dimensional Hilbert space is separable if and only if its di-
mension is dimH = ℵ0.

1.3 Isomorphisms and isometries

Definition 1.5. An isomorphism A : H → K is a surjective linear operator such that

1. 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ H

2. A is surjective.

2This can be rephrased in terms of nets. Let’s not do that.
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If A only satisfies 1, it is called an isometry.

Example 1.4. A : `2 → `2 sending A(x1, x2, . . . ) = (0, x1, x2, . . . ) is an isometry but not
an isomorphism.

Proposition 1.5. A is an isometry if and only if ‖Ax‖K = ‖x‖H or all x ∈ H

Proof. ( =⇒ ) follows from the definition. To get (⇐= ), use the Polar identity.

Theorem 1.5. dimH = dimK if and only if H is isomorphic to K.

Proof. ( =⇒ ) Let E be a basis for H. Then define A : H → `2(E) as h 7→ (〈h, e〉)e∈E . We
get

H K

`2(E) `2(F)

Corollary 1.5. An infinite-dimensional Hilbert space is separable if and only if it is iso-
morphic to `2(N).

Example 1.5. The Fourier transform is an isomorphism L2
C[0, 2π)→ `2C(Z) sending f 7→∫ 2π

0 fen dt.

1.4 Direct sums

Definition 1.6. Let H,K be inner product spaces. The direct sum H × K is an in-
nerproduct space with coordinatewise addition and the inner product 〈h⊕ k, h′ ⊕ k′〉 =
〈h, h′〉+ 〈k, k′〉. For an arbitrary family (Hi)i∈I , we define

⊕
i∈I

Hi =

{
(hi)i∈I ∈

∏
i∈I

hi :
∑
i∈I
‖hi‖2 <∞

}
, 〈(hi)i, (ki)i〉 =

∑
i

〈hi, ki〉 .
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