Math 255A' Lecture 2 Notes

Daniel Raban

September 30, 2019

1 More Hilbert Space Review

1.1 Linear functionals

Let H be a Hilbert space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . We want to consider linear functionals $L: H \to \mathbb{F}$.

Proposition 1.1. Let $L: H \to \mathbb{F}$ be linear. The following are equivalent.

- 1. L is continuous.
- 2. L is continuous at 0.
- 3. L is continuous at one point.
- 4. L is bounded ($\exists c < \infty$ such that $|L(h)| \leq c ||h||$ for all $h \in H$).

Definition 1.1. For a bounded linear functional *L* its **norm** is

$$\begin{split} \|L\| &= \inf\{c > 0 : |L(h)| \le c \|h\|\} \\ &= \sup\left\{\frac{|L(h)|}{\|h\|} : h \in H \setminus \{0\}\right\} \\ &= \sup\{|L(h)| : \|h\| = 1\}. \end{split}$$

Theorem 1.1 (Riesz representation). If $L : H \to \mathbb{F}$ is a bounded linear functional, then there is a unique $h_0 \in H$ such that $L(h) = \langle h, h_0 \rangle$ for all $h \in H$. Moreover, $||L|| = ||h_0||$.

Corollary 1.1. If $L : L^2_{\mathbb{R}}(\mu) \to \mathbb{R}$ is a bounded linear functional, then there exists a unique $h_0 \in L^2_{\mathbb{R}}(\mu)$ such that $L(h) = \int h\overline{h_0} \, d\mu$ for all $h \in L^2_{\mathbb{R}}(\mu)$.

1.2 Orthonormal sets and bases

Definition 1.2. A subset $\mathcal{E} \subseteq H$ is orthonormal if $\langle e, e' \rangle = \delta_{e,e'}$ for all $e, e' \in \mathcal{E}$. \mathcal{E} is a **basis** if it is maximal under inclusion.

Proposition 1.2. Any orthonormal set is contained in a basis.

The proof uses Zorn's lemma.¹

Example 1.1. In $L^2_{\mathbb{C}}([0, 2\pi])$, let $e_n(t) = \frac{1/\sqrt{2\pi}^{int}}{e}$. The set $\{e_n : n \in \mathbb{Z}\}$ is an orthonormal set (it is actually a basis, too).

Example 1.2. In \mathbb{F}^n , let e_k be the vector with all 0s except a 1 in the k-th coordinate. Then $\{e_1, \ldots, e_n\}$ is an orthonormal basis.

Example 1.3. In $\ell^2 = \{(x_i)_{i=1}^{\infty} : \sum_i |x_i|^2 < \infty\}$, let e_n be the vector with all 0s except a 1 in the *n*-th coordinate. Then $\{e_n : n \in \mathbb{N}^+\}$ is an orthonormal basis.

Theorem 1.2 (Gram-Schmidt procedure). If $(h_n)_{n\geq 1}$ is linearly independent, then there is an orthonormal sequence $(e_n)_{n\geq 1}$ such that for all $N \in \mathbb{N}$, we have $s\text{span}\{h_1, \ldots, h_N\} =$ $\text{span}\{e_1, \ldots, e_N\}.$

Proposition 1.3. Let $\{e_1, \ldots, e_n\}$ be an orthonormal set in H, and let their span be $M = \operatorname{span}\{e_1, \ldots, e_n\}$. Then $P_M h = \sum_{i=1}^n \langle h, e_i \rangle e_i$.

Proof. Recall that $P_M h$ is the unique vector in M such that $h - P_M h \perp M$. Check this property.

Theorem 1.3 (Bessel's inequality). If $(e_n)_{n\geq 1}$ is an orthonormal sequence in H and $h \in H$, then $\sum_{i\geq 1} |\langle h, e_n \rangle|^2 \leq ||h||^2$.

Proof. Fix $n \in \mathbb{N}$. Then consider $\langle h, e_1 \rangle, \dots, \langle h, e_n \rangle e_n, h - P_n h$. The Pythagorean identity gives $\sum_{i=1}^n |\langle h, e_i \rangle|^2 + ||h - P_n h||^2 = ||h||^2$. Removing the term $||h - P_n h||^2$ gives the inequality for n.

Corollary 1.2. If \mathcal{E} is an orthonormal set in H and $h \in H$, then $\mathcal{E}_0 = \{e \in \mathcal{E} : \langle h, e \rangle \neq 0\}$ is countable.

Proof. We have $\mathcal{E}_0 = \bigcup_{n \ge 1} \mathcal{E}_n$, where $\mathcal{E}_n = \{e \in \mathcal{E} : |\langle h, e \rangle| \ge 1/n\}$. So Bessel's inequality implies $|\mathcal{E}_n| \le n^2 ||h||^2$. In particular, each \mathcal{E}_n is finite.

Corollary 1.3. If \mathcal{E} is orthonormal in H and $h \in H$, then

$$\sum_{e \in \mathcal{E}} |\langle h, e \rangle|^2 \le ||h||^2.$$

¹You cannot do this without waving the magic set theory wand.

Remark 1.1. By the sum over all $e \in \mathcal{E}$, we mean that it is a countable sum, since all but countably many terms in the sum are 0 for each $h \in H$.

What if we want to talk about uncountable sums in general?

Definition 1.3. Let $(h_i)_{i \in I}$ be an indexed family in H. Then

$$\sum_{i \in I} h_i = k$$

means that for every $\varepsilon > 0$, there is a finite $F \subseteq I$ such that whenever $F \subseteq F \subseteq I$ and $|G| < \infty$, we have $||k - \sum_{i \in G} h_i|| < \varepsilon^2$.

Lemma 1.1. If \mathcal{E} is an orthonormal set in H, $M = \overline{\operatorname{span}} \mathcal{E}$, and $\mathbb{P} = P_M$, then

$$Ph = \sum_{e \in \mathcal{E}} \langle h, e \rangle \, e.$$

Theorem 1.4. Let \mathcal{E} be an orthonormal set in M. The following are equivalent:

- 1. \mathcal{E} is a basis
- 2. If $h \perp \mathcal{E}$, then h = 0.
- 3. $\overline{\operatorname{span}} \mathcal{E} = H$
- 4. For all $h \in H$, $h = \sum_{e} \langle h, e \rangle e$.
- 5. For all $g, h \in H$, $\langle g, h \rangle = \sum_{e} \langle g, e \rangle \langle e, h \rangle$.
- 6. For all $h \in H$, $||h||^2 \sum_{e} |\langle h, e \rangle|^2$.

Corollary 1.4. Any two bases of H have the same cardinality.

Definition 1.4. The **dimension** $\dim H$ is the cardinality of a basis of H.

Proposition 1.4. An infinite-dimensional Hilbert space is separable if and only if its dimension is dim $H = \aleph_0$.

1.3 Isomorphisms and isometries

Definition 1.5. An isomorphism $A: H \to K$ is a surjective linear operator such that

- 1. $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x, y \in H$
- 2. A is surjective.

²This can be rephrased in terms of nets. Let's not do that.

If A only satisfies 1, it is called an **isometry**.

Example 1.4. $A: \ell^2 \to \ell^2$ sending $A(x_1, x_2, ...) = (0, x_1, x_2, ...)$ is an isometry but not an isomorphism.

Proposition 1.5. A is an isometry if and only if $||Ax||_K = ||x||_H$ or all $x \in H$

Proof. (\implies) follows from the definition. To get (\Leftarrow), use the Polar identity. \Box

Theorem 1.5. dim $H = \dim K$ if and only if H is isomorphic to K.

Proof. (\implies) Let \mathcal{E} be a basis for H. Then define $A: H \to \ell^2(\mathcal{E})$ as $h \mapsto (\langle h, e \rangle)_{e \in \mathcal{E}}$. We get

$$\begin{array}{ccc} H & K \\ \uparrow & \uparrow \\ \ell^2(\mathcal{E}) \longleftrightarrow \ell^2(\mathcal{F}) \end{array} \qquad \Box$$

Corollary 1.5. An infinite-dimensional Hilbert space is separable if and only if it is isomorphic to $\ell^2(\mathbb{N})$.

Example 1.5. The Fourier transform is an isomorphism $L^2_{\mathbb{C}}[0, 2\pi) \to \ell^2_{\mathbb{C}}(\mathbb{Z})$ sending $f \mapsto \int_0^{2\pi} fe_n dt$.

1.4 Direct sums

Definition 1.6. Let H, K be inner product spaces. The **direct sum** $H \times K$ is an innerproduct space with coordinatewise addition and the inner product $\langle h \oplus k, h' \oplus k' \rangle = \langle h, h' \rangle + \langle k, k' \rangle$. For an arbitrary family $(H_i)_{i \in I}$, we define

$$\bigoplus_{i\in I} H_i = \left\{ (h_i)_{i\in I} \in \prod_{i\in I} h_i : \sum_{i\in I} \|h_i\|^2 < \infty \right\}, \qquad \langle (h_i)_i, (k_i)_i \rangle = \sum_i \langle h_i, k_i \rangle.$$